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The Gaussian condensation (GC) method of numerical matrix diagonalization is 
described, and some of its advantages and limitations discussed. It is particularly useful 
as an aid to the fast precise calculation of ESR line positions and intensities, and is 
especially suitable when large complex Hermitian ESR spin-Hamiltonian matrices 
are involved in iterative fitting procedures. 

1. INTRODUCTION 

Line positions and strengths need to be calculated when analyzing ESR spectra. 
The magnetic field at which a resonance occurs is associated with the eigenvalues 
of an appropriate spin-Hamiltonian matrix, and the transition probability is 
obtained from the dipole moment matrix. Both matrices are usually set up in a 
nondiagonal representation, and the eigenvectors of the spin-Hamiltonian are 
needed for transformation of the dipole moment into a diagonal representation. 

Reported methods of numerically computing eigenvalues and eigenvectors for 
ESR purposes involve standard procedures [l] such as Jacobi [2] or the faster 
Householder [3]. If the spin-Hamiltonian matrix is real, these have been applied 
directly; if it is complex Hermitian, they have been used [2, 31 with the augmented 
(doubled order) matrix formed from the real and imaginary parts [l, 41, thus 
avoiding complex arithmetic but at the cost of increased computation time. 

Householder’s method for complex matrices has been described by Mueller [5]. 
His procedures “Householder Hermitian” and “Reverse,” together with procedures 
for the QR algorithm as described by Businger [6] and Welsch [7], have been used 
for some time in this laboratory to handle complex Hermitian matrices. Program- 
med (by Joan D. Hayhurst, CSIRO Division of Computing Research) as a 
FORTRAN routine named HERMQR, the combination is general and efficient, 
provides accurate eigenvalues and eigenvectors, and is capable of handling degen- 
eracies. As discussed below, it has also been used to complement the method 
which is the main topic of this paper and whose performance will be compared 
with it. 
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For relatively large problems-in particular, Mn2+ ESR spectra [S] involving 
36 x 36 irreducible complex Hermitian matrices-computation methods sub- 
stantially faster than HERMQR are required. Speed is important because succes- 
sive-approximation methods (as usually applied to fitting spin-Hamiltonian param- 
eters) involve repetition of the calculation of a whole spectrum (or set of spectral 
lines), while the basic process of calculating single ESR line positions and inten- 
sities itself requires iterative procedures and hence multiple diagonalizations. 

The main computational load arises because in ESR spectroscopy the stimulating 
radiation frequency v is fixed, and resonance is achieved by varying the external 
magnetic field H and, with it, the energy levels. Thus H appears explicitly in the 
Hamiltonian matrix, and for each individual transition observed (or required to 
be calculated) a fresh matrix has to be formed and the relevant eigenvalues com- 
puted. In the Mn2+ case, with S = I = 512, there are 15 possible fine-structure 
transitions (AM = -1 through -5, with AM = 0 not counted), each with 36 
possible hyperfine components, so that a total of 540 field-determining calculations 
may have to be made for one set of spin-Hamiltonian parameters. 

Construct matrix 
as function of 

Hr 

Extract energy 
levels W”,W, 

Y = %+I+ 
Hr+l-22 

(z2-z,)/(H,+,-H,)-1 

0 

Form next approximation 
H r+l =H,-[Ho-tWU-WLg/AM 

FIG. 1. Basic procedure, including convergence acceleration, for finding line position H as 
(r + l)-th successive approximation. 
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Furthermore, iterative procedures are required for each individual line, whose 
position H is such that the corresponding upper and lower energy levels W, and 
W, (each a function of H) satisfy the resonance condition W, - W, = W, , 
with W,, = H,, = hv/gp, where energy is measured in magnetic field units and 
Ho, h, g, and p have their usual meanings. Determination of H may be carried 
out by the successive-approximation method indicated in the flowchart of Fig. 1, 
with convergence accelerated by a variation of the Aitken technique [l]. The 
initial approximation to H is conveniently obtained from closed perturbation 
theory formulas. 

Only when the line position H finally has been found do the eigenvectors asso- 
ciated with the energy levels need to be computed, so that line strengths can then 
be calculated. 

For computing eigenvalues and eigenvectors, this paper describes procedures 
that are simpler and faster than those previously reported in ESR studies, and 
which may also be used in similar types of problems. 

2. THEGC METHOD 

The key to improving computation speed is the fact that only two eigenvalues 
are required from a single matrix; some standard diagonalization methods provide 
a complete solution, most of which is irrelevant to the usual ESR problem. Fur- 
ther, good initial approximations to the ESR eigenvalues can frequently be obtained 
by perturbation theory. 

A single specified eigenvalue may be obtained by an adaptation of the Gaussian 
elimination method of solving simultaneous equations (described in most books 
on numerical analysis), and will be referred to here as the “GC method” (for 
Gaussian condensation). The principle was suggested originally by Badger (quoted 
in Ref. [lo]) and evolved into the “continued-fraction method,” well known in 
molecular spectroscopy [9]. 

Applied to the determination of the n-th eigenvalue of the m-th order matrix 
X = [XJ, the basic algorithm [lo] of the GC method is: (1) A trial eigenvalue h 
is subtracted from all diagonal elements except the n-th; (2) the resulting matrix 
is effectively reduced to triangular form by Gaussian elimination, in such a fashion 
as to condense the off-diagonal contributions on to the n-th diagonal element. 
The ultimate value XA, of the latter is then the required eigenvalue, provided 
XA, equals X to within an acceptable small factor E, say. If XA, is not close enough 
to h, then XA, is used as a new trial value, and the process iterated until conver- 
gence is achieved. 

The analytical basis of the method follows from the fact that if the n-th eigen- 
value X, is subtracted from all diagonal elements of X, the resulting secular deter- 
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minant vanishes. Triangularization in the manner just described then requires 
that XA, - h, = 0, i.e., that Xh, = h, . 

Further detail is indicated in the flowchart of Fig. 2. Complex arithmetic oper- 
ations on off-diagonal elements, as required for complex Hermitian matrices, are 
easily included. Operations (in CLEAR of Fig. 2) on zero off-diagonal elements 
may be skipped readily if time for computer logical testing is significantly shorter 
than for arithmetic operations, and thus needless work on sparse ESR matrices 
can be avoided. All operations are carried out in the manifold of X, and no 
auxiliary storage space is needed. The matrix is destroyed by each iteration. For 
real nonzero elements, there are approximately m3/3 subtractions and m3/3 multi- 
plications plus divisions involved per iteration. Convergence of the process may 
be accelerated by using techniques described elsewhere [I 11. 

CLEAR above diagonal 

Cm below dqonal 

for,:l,Z.. .n-1 

FIG. 2. Basic GC routine for extracting n-th eigenvalue W, to precision E, from m-th order 

matrix X. 
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When the eigenvalue has been obtained, back-substitution in the triangulated 
matrix gives the associated eigenvector, if required. 

EIGHERM is the name given to a FORTRAN routine (of which a listing is 
available from the author) incorporating the above simple processes. For a 
36 x 36 complex Hermitian matrix, with about two-thirds of the elements nonzero, 
HERMQR requires, on a CDC3600 computer, about 25 set to extract all the 
eigenvalues and eigenvectors. EIGHERM needs about 0.5 set per iteration, with 
4-6 iterations (total, to obtain a pair of eigenvalues and eigenvectors) predomi- 
nating under favorable conditions (good initial perturbation approximations), thus 
providing a most useful timesaving factor of about 10. On a CDC6600, the times 
are reduced by a factor of 4 to 5. 

3. USEOFTHE GC METHOD 

Matrices having degenerate eigenvalues cannot be handled directly, but this 
does not cause any difficulties with ESR problems. 

In ESR spectroscopy, the Hamiltonian matrix is usually constructed in a 
representation in which the Zeeman energy is diagonal and where the principal 
contribution to the nuclear interaction is also diagonal except for terms connecting 
different fine-structure states. States are labeled by the expectation values of the 
electron and nuclear spin angular momenta along their respective axes of quantiza- 
tion in this representation. These labels are good quantum numbers in a high- 
field situation where, for large H, the predominant energy contribution is the 
diagonal Zeeman term. In high-field, the matrix is then nearly diagonal, the 
diagonal elements are good approximations to the eigenvalues and may be used 
as initial trial values h in applying the GC method, and the convergence is fast; 
better h’s for initial approximations are, however, readily obtained by perturbation 
theory. 

The number of iterations required for convergence depends on the precision 
demanded, that is, the value of E chosen. For most ESR work, values of lo-“-lO-‘j 
are quite adequate for comparison with experimental observations. 

When the representation is not a good one, such as in low- and intermediate- 
field cases where considerable mixing of states occurs (sometimes leading to level 
crossing), even second-order perturbation theory may not give a sufficiently good 
initial approximation to the eigenvalue to allow the GC method to converge to the 
wanted level. Incorrect convergence can be detected manually by comparison of 
results with a rough energy-level diagram (or table) obtained by using a safe 
method (such as HERMQR); this is worthwhile when iterative fitting processes 
are involved and exploratory calculations form only a small part of the overall 
computing load. Automatic checking can be done by using EIGHERM to carry 
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out the bulk of the calculation, its final answer then being checked against 
HERMQR (or similar). in practice, with the Mn2+ problem mentioned, it was 
found that incorrect convergence was associated with an excessive number of 
CC iterations, and the empirically chosen iteration-count value 5 was used to 
indicate whether EIGHERM should be abandoned in favor of HERMQR. In 
regions where EIGHERM was known to fail occasionally, a mixed procedure, 
outlined in the flowchart of Fig. 3 and guaranteeing a correct result, was then 
always able to provide significant overall timesaving. 

(L> 
FormF 

approximation HI - From X(Hl) find Form next 

by perturbation WC*) WY), using - approximation U’ 
formula HERMQR Hr, (r=Z) 

I- 
From X(Hr),and using W:f! Wr’ 

- 

FIG. 3. Outline of mixed procedure for finding line position H, using EIGHERM where 
possible, and HERMQR for checking and backup (other checking/backup routines could be 
employed). 

For high-field cases, the GC method on its own is a simple, fast, and accurate 
aid to the computation of ESR line positions and strengths. When the usual 
Hamiltonian representation is not a good one, the GC method can still be 
employed efficiently, in a mixed procedure, on problems where computing load 
is an important factor. 
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